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It is argued that, if a regular Hamiltonian is perturbed by a term that produces chaos, the onset
of chaos is shifted towards larger values of the perturbation parameter if the unperturbed spectrum
is degenerate and the lifting of the degeneracy is of second order in this parameter. The argument
is based on the behavior of the exceptional points of the full problem.
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I. INTRODUCTION

The study of single-particle motion in deformed mean
fields has attracted much attention recently because of
its relevance to nuclear physics and for the description of
metallic clusters [1,2]. For the case of harmonic oscilla-
tor potentials, deformations that go beyond a quadrupole
deformation are nonintegrable and show chaotic behav-
ior in the classical and quantum mechanical treatment.
However, closer scrutiny has revealed that the addition of
an octupole term to a prolate quadrupole potential pro-
duces the typical signatures of chaos only for fairly large
octupole strength, in fact, the problem appears to be
close to integrability. Moreover, the quantum mechan-
ical treatment produces new shell structures for finite
octupole strength even though the classical problem is
nonlinear [2,3]. In contrast, the addition of an octupole
term to an oblate quadrupole deformed potential yields
chaos with a positive Lyapunov exponent and the cor-
responding quantum spectrum has the typical statistical
properties ascribed to quantum chaos.

In this paper we address the question what the intrinsic
properties of the quantum mechanical operators are that
give rise to the different behavior described above. This
question is of interest for a possible characterization of
what is called quantum chaos. The example mentioned
in the preceding paragraph renders a good case for such
studies as it refers to the orthodox situation where a clas-
sically chaotic system is treated quantum mechanically.
Our aim is to unravel the universal operator properties
that produce the typical patterns ascribed to quantum
chaos without reference to an underlying classical sys-
tem. There was progress in previous work towards this
aim as it had been recognized that, for a problem of the
form H® 4+ AH!, it is precisely the high density of the
exceptional points [4,5], i.e., the singularities of the spec-
trum FE,(A), that bring about the statistical properties
of the spectrum associated with quantum chaos [6]. The
different aspect in the present paper is the effect of de-
generacies at A = 0 upon the behavior for A > 0. We find
that if the lifting of degeneracies is a second-order effect
in A, then the onset of chaos is suppressed and will occur
only for larger values of A. It is this pattern that explains
the difference between the prolate and the oblate case as
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described above. The major point of the present paper
is the universal validity of this finding, and the behavior
of the exceptional points around A = 0 provides for the
explanation.

In the following section we introduce briefly the con-
cept of exceptional points and present the argument for
the statement made above. Section IIT contains exam-
ples for illustration and Sec. IV refers to the particular
physical example introduced above. A summary and dis-
cussion is given in Sec. V.

II. EFFECT OF DEGENERACIES
ON EXCEPTIONAL POINTS

To make the paper self-contained we briefly recapitu-
late the significance of exceptional points and their con-
nection to avoided level crossings. This will facilitate the
discussion about the effect of degeneracies on exceptional
points and hence the global structure of the spectrum.

There is essentially a one to one relationship between
avoided level crossings and exceptional points [6]. If we
have a quantum mechanical problem of the form H° +
AH! with H® and H! given as N x N matrices, then
the spectrum E,(A\),n =1,..., N, is determined by one
analytic function evaluated on N Riemann sheets [5]. If
there are no degeneracies, the N sheets are connected by
N(N — 1) branch points, the exceptional points. They
occur in complex conjugate pairs and are the points in the
complex A plane where any two pairs of energies coalesce.
If this happens sufficiently close to the real A axis, an
avoided level crossing occurs since the pair of energies
coalescing in the complex plane still assumes values near
each other on the neighboring real A axis. In principle,
the positions of the exceptional points are determined by
the resultant of the secular equation for the spectrum,
i.e., by the simultaneous solution of the two polynomial
equations

det(E — H° —AH') =0,

d 0 1y
T det(E — H® —AH") =0, (1)

which leads by elimination of E to the resultant, which
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is a polynomial of order N(N — 1) in A. For large values
of N, an explicit calculation of the exceptional points
is prohibitive. However, it is possible to determine a
distribution for the real parts of the exceptional points
from the knowledge of H? and H! alone [6], and in this
way the regions of real A values with large-scale avoided
level crossings can be found. These are the regions where
the spectrum shows the properties ascribed to quantum
chaos. This method has been tested and applied to the
particular physical situation of the hydrogen atom in a
strong magnetic field [7].

The effect of removing degeneracies by small random
perturbation was discussed previously [8]. In the present
paper we address the particular problem of lifting de-
generacies by the term AH?, i.e., we assume that H® has
certain systematic degeneracies (such as, for example, the
harmonic oscillator). Guided by the particular physical
problem as discussed in the Introduction and resumed in
Sec. IV, we consider and compare two situations that
turn out to be significantly different in the context of
quantum chaotic behavior. The two situations are char-
acterized by the presence or absence of a linear term in
the expansion of E,(\) in powers of A around A = 0.

It is obvious that the spectrum has a distinctly differ-
ent behavior in the vicinity of A = 0 for the two cases con-
sidered. A nonvanishing linear term exhibits the typical
behavior of a lifting of degeneracies, when a perturbation
is switched on, in that the levels fan out of the degener-
ate level when A is turned on. With a zero linear term
the levels stay close together and separate only when the
quadratic term becomes significant. From this picture
one intuitively expects that, if the additional term AH*!
produces chaos at all, the onset of chaos is delayed for
increasing A in the latter case when comparing with the
former case. In the following we confirm this expectation
using the exceptional points for the argument, while Sec.
III presents some illustrative examples.

Each m-fold degeneracy reduces the total number of
exceptional points by the number m(m — 1) if the linear
terms are present in the expansion of the energy levels.
If the leading perturbing terms are quadratic, there is a

p 0 0 05
0 0 0 15
0 0 —pu 2
05 15 2 u
H'@w=]2 2 3 o0
15 3 1 0
2 05 2 15
05 1.5 15 2.5

0 05 2 0

For . = 0, H! has only zero entries in the degenerate sub-
spaces of H; therefore the nine levels of the full problem
have a vanishing linear term when expanded at A = 0.
Otherwise the entries of H! have no significance; they
have been generated randomly and any other choice (with
similar orders of magnitude) yields the same qualitative
result. Also, a diagonal form of H! in the degenerate
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further reduction by the same number m(m — 1). This
follows from the resultant that starts with A™(m=1) as
the lowest order in the former case and with A2™(m—1)
in the latter case. This behavior is valid for each m-
fold degeneracy; in other words, if the levels have at
A = 0 the degeneracies mj,mgz,..., the lowest-order
terms of the resultant start with A™1(m1—1) \ma(ma—1)--
when the lifting of the degeneracy is linear and with
A2mi(m1—1) \2mz(m2—1) ... for a quadratic lifting. A par-
ticular m-fold degeneracy can be viewed as a conflu-
ent situation where m(m — 1) complex conjugate branch
points have merged into the point A = 0, thus cancel-
ing the singularities altogether; likewise, in the quadratic
case, 2m(m — 1) singularities have merged. The essential
point of the argument lies in the comparison between the
two cases: switching on linear terms leads to the emer-
gence of Y .m;(m; — 1) additional exceptional points.
The distance from A = 0 of the additional exceptional
points depends on the magnitude of the linear terms. For
typical values they are closer to, rather than remote from,
the origin. For large matrices the additional number of
exceptional points can amount to many thousands. This
causes avoided level crossings in the spectrum in a region
where without the linear term the spectrum appears to
be smooth.

III. ILLUSTRATION OF SIMPLE EXAMPLES

The realistic example that initiated this work produces
more than 29 000 exceptional points for the matrix size
used in our work [2]. We return to its treatment in Sec.
IV. Here we illustrate the behavior of the exceptional
points in a low-dimensional example. The effect on the
spectrum, in particular the different onset of quantum
chaos for the two different cases, is subsequently demon-
strated in a generic matrix model.

We consider a nine-dimensional model where H® has
the diagonal entries (1,1,1,2,2,2,3,3,3). The threefold de-
generacies are lifted by the term AH® with

2 15 2 15 0

2 3 05 15 05

3 1 2 15 2

0 0 15 25 0

0 0o 1 15 1 |. (2)
0 —p 1 15 05

1 1 p 0 0
15 15 0 0 0

1 05 0 0 —p

[
subspaces can always be achieved by orthogonal trans-
formations within the subspaces without changing the
global spectrum. The specific form chosen is convenient
as it leaves out additional irrelevant parameters and it is
in line with the physical situation discussed in Sec. IV.
A nine-dimensional model yields 36 exceptional points
in each half plane, our particular case reduces this num-
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ber to 18. In Fig. 1(a) we display most of the exceptional
points in the upper A plane. When the parameter p is
switched on, nine additional exceptional points emerge
from A = 0 in each half plane. This is illustrated in Fig.
1(b). The basic difference between the two figures lies in
the additional singularities scattered around A = 0. Note
that the other exceptional points change only moderately
under variation of p. The corresponding spectra are dis-
played in Fig. 2. The growing distance from the origin
of the avoided crossings with increasing value u is clearly
discernible in Figs. 2(c) and 2(d), where only part of the
spectrum is shown for better illustration. These avoided
crossings are due to the “new” exceptional points. Note
that, in particular, the levels that originate from the same
degenerate energy are affected. When this occurs on a
large scale, the nearest-neighbor distribution of the spec-
trum will typically assume the Wigner surmise for rather
small values of A while there is no resemblence to the
Wigner curve when the linear terms of the perturbation
vanish. This is demonstrated in the following study case.

Essentially we repeat the model used above. We con-
sider N > 100 for the full dimension and the dimensions
of the degenerate subspaces can be 2, 3, 4 and so on. The
diagonal matrix H° contains the entries (1,1,...,2,2,...)
and the entries of H! are filled randomly with elements
between —1 and +1. The off-diagonal elements of the di-
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FIG. 1. Exceptional points of the nine-dimensional model
in the complex A plane for (a) 4 = 0 and (b) p = 1/2 (dia-
monds) and p = 1 (crosses). Note the difference of the scale
in (a) and (b) and the motion away from the origin when
increases.
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agonal blocks of the degenerate subspaces are set equal to
zero while the corresponding diagonals are filled with the
numbers p(—Ndeg/2+1/2, —Ngeg/2+1, ..., Naeg/2—1/2)
with ngeg being the dimension of the degenerate sub-
space. Because of the huge number of exceptional points,
we no longer focus our attention on their positions.
Instead, we compare nearest-neighbor distributions for
p =0 and p # 0 for small values of A.

In Fig. 3 typical results for the two different cases are
presented. For the same value of A sample averages of ten
samples of nearest-neighbor distributions are illustrated
for 4 = 0 and g = 1. There is of course a continuous
transition from Fig. 3(a) to Fig. 3(b) and only if the
order of magnitude of the diagonal elements of H! has
reached that of the other matrix elements, that is, for
© ~ 1, the Wigner distribution has fully developed. We
can understand, in terms of the exceptional points, why
for 0 < p < 1 the situation closely resembles that of
© = 0, even though a large number of exceptional points
has already emerged from the origin of the A plane. When
the exceptional points are still very close to the origin,
that is, very close to each other, there is a cancellation
with regard to the effect on the spectrum. In fact, two
square root branch points connecting the same Riemann
sheets are barely noticeable from a distance; the function
2v/22 + €2 looks just like 22 for |z| > . Only when the
branch points have moved out sufficiently far does the
effect on the spectrum become significant, as clearly seen
in Fig. 3. The results presented refer to n4eg = 8 and
N = 304, which yields 2128 exceptional points having
emerged from the origin. When ng4eg is increased, the
window of A values, where this transition is strongly pro-
nounced, becomes wider. Conversely, for smaller values
of ngeg the effect is clearly seen only in a smaller range of
A values. This follows from the higher density of excep-
tional points associated with larger values of n4eg. Also,
the X values beyond which a plain Wigner distribution
occurs even when p = 0 moves closer towards the origin
with increasing n4eg. These two observations can qualita-
tively be understood from perturbative arguments in that
we expect the onset of a Wigner distribution beyond the
intersection point of two straight lines or parabolas from
neighboring levels for pu # 0 or p = 0, respectively; the
curves intersect at Aipter Which is proportional to 1/n4eg
in the former and 1/,/M4cg in the latter case. This argu-
ment indicates where perturbation breaks down; we re-
call that the present paper deals with a nonperturbative
situation as it is just the exceptional points that break
down perturbation. We note that in a typical physical
situation, such as the one discussed in Sec. IV, one is
usually faced with steadily increasing values of ngeg with
increasing energy.

IV. A PHYSICAL EXAMPLE

Here we present the physical example [2] that actu-
ally initiated this work. Phenomenological mean fields
that contain quadrupole and octupole deformations have
been investigated classically [9] and quantum mechani-
cally [1,2] as this is of interest in nuclear physics and more
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recently also for the description of metallic clusters. As a
detailed discussion is presented in the quoted papers we
here focus our attention on the aspect of interest in the
present context.

The single-particle potential

2 23__3 2
V(@,z>=ﬂ“’2("2+z‘“ e ) (3)

2 b2 /92+22

describes for b > 1 (b < 1), a quadrupole deformed har-
monic oscillator of prolate (oblate) shape with an addi-
tional octupole term; in fact, the term multiplying X is
proportional to r2P3(cos #) with P; the third-order Leg-
endre polynomial. We use cylindrical coordinates z and
¢ = v/xz?2 +y2% For X # O this is a two degrees of free-
dom system that is nonintegrable. For b < 1 it turns out
that the switching on of the octupole term very quickly
gives rise to classically chaotic behavior while the onset
of chaos is barely discernable when b > 2. The statistical
analyses of the correpsonding quantum spectra reveal the
expected results in that for b < 1 the Wigner surmise is
obtained for the nearest-neighbor distribution while for
b > 2 a Poisson distribution is obtained and for particu-
lar values of A even a new shell structure emerges. The
latter is understood in terms of corresponding classical
periodic orbits [1,2].

In the spirit of the present paper the quantum me-
chanical findings should be directly obtained from the
matrix structure of the associated Hamiltonian and the
exceptional points related to it. The appropriate basis
where H° = p?/2m + mw?(0? + 22/b%)/2 is diagonal is
given by the occupation numbers n, and n,. Note that
the 2z component of the angular momentum is conserved
and we consider here only I, = 0. The arrangement of
the quantum numbers in the matrix H (1n ni)y(ntim) 18
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FIG. 3. Sample averages of nearest-neighbor distributions
of 304 levels for (a) © = 0 with an eightfold degeneracy at
A =0 and for (b) p = 1; both distributions are for A = 0.2.
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determined by the arithmetic ascending order of the un-
perturbed levels E} , . The arrangement will therefore
depend on the value of b. The selection rules restrict en-
tries in H! to n), = n,+(2k+1) and n/, = n, +(2k) with
k=0,1,2,.... It turns out that for b > 2 the entries van-
ish in the blocks of H!, which refer to the subspaces in
which the unperturbed energies E° are degenerate. As
a consequence, the perturbative expansion at A = 0 of
the eigenvalues starts with the quadratic term. From the
discussion in Sec. III it follows that a great number of
exceptional points are trapped at A = 0 and we therefore
expect the onset of quantum chaos only for values of ) at
an appreciable distance from zero. Using 544 x 544 matri-
ces we illustrate in Fig. 4(a) the distribution of the real
parts of the exceptional points for the matrix problem
H° + \H! with b = 2. The bulk of the exceptional points
occur in fact at values of A that fall outside the physical
range (for A/A; > 1 the potential no longer binds). In
Fig. 4(b) we display the corresponding distribution for
b =1/2. Now we obtain the maximum density of excep-
tional points as soon as the parameter A is switched on.
This is in accordance with the results of Sec. III since
now the linear term does occur in the expansion of each
level around A = 0 as there are nonzero entries in the
blocks of H! that refer to the degenerate subspaces. The
effect of this difference in the distribution of the excep-
tional points manifests itself in the different behavior of
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FIG. 4. Distribution of the real parts of the exceptional
points for (a) the prolate case and (b) the oblate case.

W. D. HEISS AND S. RADU 52

the respective quantum spectra in that a Wigner distri-
bution is found for A > 0 when b = 1/2, while for b = 2
a Wigner distribution never develops for A < A..

V. SUMMARY AND DISCUSSION

Section IV provides a fine example where the statis-
tical properties of the quantum spectrum can be pre-
dicted from the properties of the individual matrices H®
and H! alone. To obtain the distribution of the excep-
tional points as illustrated in Fig. 4 it is not necessary to
solve the full problem H® + AH! let alone to determine
their positions (which would be impossible for more than
295 000 exceptional points). The distribution was found
using the method developed in [6,7] and explained in the
Appendix. There, only some simple properties of H® and
H! are used. While this result alone yields just another
confirmation of the method employed in [7], the differ-
ent aspect of this paper lies in the prediction that, if
the unperturbed levels are degenerate to second order,
level statistics ascribed to quantum chaos are substan-
tially suppressed initially and become manifest only for
sufficiently large values of the perturbation. The argu-
ment comes about rather naturally from the behavior of
the exceptional points, which in turn determine the de-
gree of quantum chaos [6]. While Sec. IV provides the
physical relevance of our findings, their universal charac-
ter is argued and demonstrated in Secs. II and III. To
the best of our knowledge, this is the first example where
even finer details with regard to level statistics can be
extracted from the distribution and the general behavior
of the exceptional points. We believe that more refine-
ment can eventually even predict new shell structure as
the one discovered in the model discussed. Work towards
this aim is in progress.

APPENDIX: DISTRIBUTION
OF THE REAL PARTS
OF THE EXCEPTIONAL POINTS

We use the method of the unperturbed curves [7],
where the actual spectrum is approximated by simple
algebraic curves. The intesection points of the approxi-
mate curves are then identified with the real parts of the
exceptional points. Since the aim is to obtain the distri-
bution rather than the exact positions, the approximate
curves suffice. They are obtained from the individual ma-
trices H® and H! only. The requirement that the actual
spectrum and the approximate curves coincide exactly
for small and for large values of A leads for the prolate
case (b = 2) to the form

€; + 1 A?
F;(A) = {

(W33 + 3w2a; A2 + ¢\ + d;) /3

for A < 0.9X,

forA > 0.9X. ,
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where the &; and w; are the eigenvalues of H° and H?,
respectively, and

|H11,n 2 Orr—1
7"22:’ a; = (UHU )i, ,
ni O n

with U being the orthogonal matrix that diagonalizes
H'. The coefficients c¢; and d; are determined so as to
smoothly match the two curves at A = 0.9)\.. We note
that the second order perturbation is correct up to third
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order terms in A and is in fact very close to the actual
spectrum for A < 0.9)\., while the expression for A >
0.9)\. is correct up to terms of the order 1/A.

For the oblate case (b = 1/2) the spectrum is, for the
purpose considered, sufficiently well approximated by the
unperturbed lines

Gl(/\) = €g; + A\w;.

Recall that the eigenvalues £; and w; are different from
those in the prolate case.
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